Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.210
Filtrar
2.
Pediatr Neurol ; 154: 51-57, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531163

RESUMO

BACKGROUND: Mutations in the CLN6 gene cause late infantile neuronal ceroid lipofuscinosis, a neurodegenerative lysosomal storage disease of childhood onset. Clinically, individuals present with progressive motor and cognitive regression, ataxia, and early death. The aim of this study is to establish natural history data of individuals with classic, late-infantile-onset (age less than five years) CLN6 disease. METHODS: We analyzed the natural history of 25 patients with late-infantile-onset CLN6, utilizing the Hamburg motor-language scale to measure disease progression. The key outcomes were CLN6 disease progression, assessed by rate of decline in motor and language clinical domain summary scores (0 to 6 total points); onset and type of first symptom; onset of first seizure; and time from first symptom to complete loss of function. RESULTS: Median age of total motor and language onset of decline was 42 months (interquartile range 36 to 48). The estimated rate of decline in total score was at a slope of -1.20 (S.D. 0.30) per year, after the start of decline. Complete loss of both motor and language function was found to be, on average, 88.1 months (S.D. 13.5). CONCLUSIONS: To our knowledge, this is the largest international study that monitors the longitudinal natural history and progression of CLN6 disease. These data may serve as a template for future interventional trials targeted to slow the progression of this devastating disease.


Assuntos
Lipofuscinoses Ceroides Neuronais , Humanos , Pré-Escolar , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/diagnóstico , Proteínas de Membrana/genética , Mutação/genética , Convulsões , Progressão da Doença
3.
Orphanet J Rare Dis ; 19(1): 125, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500130

RESUMO

BACKGROUND: CLN3 disease (also known as CLN3 Batten disease or Juvenile Neuronal Ceroid Lipofuscinosis) is a rare pediatric neurodegenerative disorder caused by biallelic mutations in CLN3. While extensive efforts have been undertaken to understand CLN3 disease etiology, pathology, and clinical progression, little is known about the impact of CLN3 disease on parents and caregivers. Here, we investigated CLN3 disease progression, clinical care, and family experiences using semi-structured interviews with 39 parents of individuals with CLN3 disease. Analysis included response categorization by independent observers and quantitative methods. RESULTS: Parents reported patterns of disease progression that aligned with previous reports. Insomnia and thought- and mood-related concerns were reported frequently. "Decline in visual acuity" was the first sign/symptom noticed by n = 28 parents (70%). A minority of parents reported "behavioral issues" (n = 5, 12.5%), "communication issues" (n = 3, 7.5%), "cognitive decline" (n = 1, 2.5%), or "seizures" (n = 1, 2.5%) as the first sign/symptom. The mean time from the first signs or symptoms to a diagnosis of CLN3 disease was 2.8 years (SD = 4.1). Misdiagnosis was common, being reported by n = 24 participants (55.8%). Diagnostic tests and treatments were closely aligned with observed symptoms. Desires for improved or stabilized vision (top therapeutic treatment concern for n = 14, 32.6%), cognition (n = 8, 18.6%), and mobility (n = 3, 7%) dominated parental concerns and wishes for therapeutic correction. Family impacts were common, with n = 34 (81%) of respondents reporting a financial impact on the family and n = 20 (46.5%) reporting marital strain related to the disease. CONCLUSIONS: Collectively, responses demonstrated clear patterns of disease progression, a strong desire for therapies to treat symptoms related to vision and cognition, and a powerful family impact driven by the unrelenting nature of disease progression.


Assuntos
Lipofuscinoses Ceroides Neuronais , Humanos , Criança , Lipofuscinoses Ceroides Neuronais/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/uso terapêutico , Glicoproteínas de Membrana/genética , Pais , Progressão da Doença , Inquéritos e Questionários
4.
Mol Cell ; 84(7): 1354-1364.e9, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38447580

RESUMO

Batten disease, the most prevalent form of neurodegeneration in children, is caused by mutations in the CLN3 gene, which encodes a lysosomal transmembrane protein. CLN3 loss leads to significant accumulation of glycerophosphodiesters (GPDs), the end products of glycerophospholipid catabolism in the lysosome. Despite GPD storage being robustly observed upon CLN3 loss, the role of GPDs in neuropathology remains unclear. Here, we demonstrate that GPDs act as potent inhibitors of glycerophospholipid catabolism in the lysosome using human cell lines and mouse models. Mechanistically, GPDs bind and competitively inhibit the lysosomal phospholipases PLA2G15 and PLBD2, which we establish to possess phospholipase B activity. GPDs effectively inhibit the rate-limiting lysophospholipase activity of these phospholipases. Consistently, lysosomes of CLN3-deficient cells and tissues accumulate toxic lysophospholipids. Our work establishes that the storage material in Batten disease directly disrupts lysosomal lipid homeostasis, suggesting GPD clearance as a potential therapeutic approach to this fatal disease.


Assuntos
Glicoproteínas de Membrana , Lipofuscinoses Ceroides Neuronais , Camundongos , Animais , Criança , Humanos , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Lipofuscinoses Ceroides Neuronais/patologia , Lisossomos/metabolismo , Fosfolipases/metabolismo , Glicerofosfolipídeos/metabolismo , Fosfolipídeos/metabolismo
5.
J AAPOS ; 28(2): 103830, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341082

RESUMO

Classically, peripheral vascular changes in the retina in patients with neuronal ceroid lipofuscinosis type 2 (CLN2) are described as vascular attenuation seen in the late stages of disease on the Weill Connell Ophthalmic Severity Score (WCOSS) staging system. We describe isolated, mild, peripheral vasculitis with peripheral arteriolar dropout identified by fluorescein angiography in patients with a WCOSS grade of stage 2. We believe this vasculitis represents an early vasodegenerative phase of disease that leads to the vascular attenuation seen in later stages of the disease.


Assuntos
Lipofuscinoses Ceroides Neuronais , Vasculite , Humanos , Aminopeptidases , Dipeptidil Peptidases e Tripeptidil Peptidases , Angiofluoresceinografia , Lipofuscinoses Ceroides Neuronais/diagnóstico , Retina , Serina Proteases , Tripeptidil-Peptidase 1
6.
J Neurodev Disord ; 16(1): 3, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183037

RESUMO

BACKGROUND: We interrogated auditory sensory memory capabilities in individuals with CLN3 disease (juvenile neuronal ceroid lipofuscinosis), specifically for the feature of "duration" processing. Given decrements in auditory processing abilities associated with later-stage CLN3 disease, we hypothesized that the duration-evoked mismatch negativity (MMN) of the event related potential (ERP) would be a marker of progressively atypical cortical processing in this population, with potential applicability as a brain-based biomarker in clinical trials. METHODS: We employed three stimulation rates (fast: 450 ms, medium: 900 ms, slow: 1800 ms), allowing for assessment of the sustainability of the auditory sensory memory trace. The robustness of MMN directly relates to the rate at which the regularly occurring stimulus stream is presented. As presentation rate slows, robustness of the sensory memory trace diminishes. By manipulating presentation rate, the strength of the sensory memory trace is parametrically varied, providing greater sensitivity to detect auditory cortical dysfunction. A secondary hypothesis was that duration-evoked MMN abnormalities in CLN3 disease would be more severe at slower presentation rates, resulting from greater demand on the sensory memory system. RESULTS: Data from individuals with CLN3 disease (N = 21; range 6-28 years of age) showed robust MMN responses (i.e., intact auditory sensory memory processes) at the medium stimulation rate. However, at the fastest rate, MMN was significantly reduced, and at the slowest rate, MMN was not detectable in CLN3 disease relative to neurotypical controls (N = 41; ages 6-26 years). CONCLUSIONS: Results reveal emerging insufficiencies in this critical auditory perceptual system in individuals with CLN3 disease.


Assuntos
Lipofuscinoses Ceroides Neuronais , Humanos , Lipofuscinoses Ceroides Neuronais/complicações , Percepção Auditiva , Potenciais Evocados Auditivos , Memória , Encéfalo , Glicoproteínas de Membrana , Chaperonas Moleculares
7.
J Pediatr Endocrinol Metab ; 37(3): 280-288, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38253347

RESUMO

OBJECTIVES: Neuronal ceroid lipofuscinosis type 11 (NCL11) is a rare disease that presents with progressive cognitive decline, epilepsy, visual impairment, retinal atrophy, cerebellar ataxia and cerebellar atrophy. We present herein a case of NCL11 in a patient diagnosed with neuromotor developmental delay, epilepsy, bronchiolitis obliterans and hypothyroidism. CASE PRESENTATION: A 4-year-old male patient was admitted to our clinic with global developmental delay and a medical history that included recurrent hospitalizations for pneumonia at the age of 17 days, and in months 4, 5 and 7. Family history revealed a brother with similar clinical findings (recurrent pneumonia, hypothyroidism, hypotonicity, swallowing dysfunction and neuromotor delay) who died from pneumonia at the age of 22 months. Computed tomography of the thorax was consistent with bronchiolitis obliterans, while epileptic discharges were identified on electroencephalogram with a high incidence of bilateral fronto-centro-temporal and generalized spike-wave activity but no photoparoxysmal response. Cranial MRI revealed T2 hyperintense areas in the occipital periventricular white matter and volume loss in the white matter, a thin corpus callosum and vermis atrophy. A whole-exome sequencing molecular analysis revealed compound heterozygous c.430G>A (p.Asp144Asn) and c.415T>C (p.Cys139Arg) variants in the GRN gene. CONCLUSIONS: The presented case indicates that NCL11 should be taken into account in patients with epilepsy and neurodegenerative diseases.


Assuntos
Bronquiolite Obliterante , Epilepsia , Hipotireoidismo , Lipofuscinoses Ceroides Neuronais , Pneumonia , Masculino , Humanos , Recém-Nascido , Lactente , Pré-Escolar , Lipofuscinoses Ceroides Neuronais/complicações , Lipofuscinoses Ceroides Neuronais/diagnóstico , Lipofuscinoses Ceroides Neuronais/genética , Epilepsia/genética , Atrofia , Progranulinas/genética
8.
Traffic ; 25(1): e12925, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272448

RESUMO

Ceroid lipofuscinosis neuronal 5 (CLN5) and cathepsin D (CTSD) are soluble lysosomal enzymes that also localize extracellularly. In humans, homozygous mutations in CLN5 and CTSD cause CLN5 disease and CLN10 disease, respectively, which are two subtypes of neuronal ceroid lipofuscinosis (commonly known as Batten disease). The mechanisms regulating the intracellular trafficking of CLN5 and CTSD and their release from cells are not well understood. Here, we used the social amoeba Dictyostelium discoideum as a model system to examine the pathways and cellular components that regulate the intracellular trafficking and release of the D. discoideum homologs of human CLN5 (Cln5) and CTSD (CtsD). We show that both Cln5 and CtsD contain signal peptides for secretion that facilitate their release from cells. Like Cln5, extracellular CtsD is glycosylated. In addition, Cln5 release is regulated by the amount of extracellular CtsD. Autophagy induction promotes the release of Cln5, and to a lesser extent CtsD. Release of Cln5 requires the autophagy proteins Atg1, Atg5, and Atg9, as well as autophagosomal-lysosomal fusion. Atg1 and Atg5 are required for the release of CtsD. Together, these data support a model where Cln5 and CtsD are actively released from cells via their signal peptides for secretion and pathways linked to autophagy. The release of Cln5 and CtsD from cells also requires microfilaments and the D. discoideum homologs of human AP-3 complex mu subunit, the lysosomal-trafficking regulator LYST, mucopilin-1, and the Wiskott-Aldrich syndrome-associated protein WASH, which all regulate lysosomal exocytosis in this model organism. These findings suggest that lysosomal exocytosis also facilitates the release of Cln5 and CtsD from cells. In addition, we report the roles of ABC transporters, microtubules, osmotic stress, and the putative D. discoideum homologs of human sortilin and cation-independent mannose-6-phosphate receptor in regulating the intracellular/extracellular distribution of Cln5 and CtsD. In total, this study identifies the cellular mechanisms regulating the release of Cln5 and CtsD from D. discoideum cells and provides insight into how altered trafficking of CLN5 and CTSD causes disease in humans.


Assuntos
Dictyostelium , Lipofuscinoses Ceroides Neuronais , Humanos , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Catepsina D/metabolismo , Dictyostelium/metabolismo , Sinais Direcionadores de Proteínas , Glicoproteínas de Membrana Associadas ao Lisossomo/genética
9.
Curr Opin Ophthalmol ; 35(3): 232-237, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38170785

RESUMO

PURPOSE OF REVIEW: This paper provides an update on intravitreal (IVT) enzyme replacement therapy (ERT) in metabolic retinal diseases; particularly neuronal ceroid lipofuscinosis type 2 (CLN2) also known as Batten disease. RECENT FINDINGS: ERT is being explored in CLN2 related Batten disease, a fatal neurodegenerative condition associated with retinopathy and blindness that is caused by the deficiency of lysosomal enzyme TPP1. Cerliponase alfa, a recombinant human tripeptidyl-peptidase1 (rhTPP1) administered by intraventricular infusions has been demonstrated to slow the rate of neurodegenerative decline but not retinopathy. A preclinical study of IVT rhTPP1 in a CLN2 canine model demonstrated efficacy in preserving retinal function and retinal morphology shown on histology. More recently, intravitreal (IVT) administration of rhTPP1 was reported in a first-in-human compassionate use study. Patients received 12-18 months of 8-weekly IVT ERT (0.2 mg rhTPP-1 in 0.05 ml) in one eye. No significant ocular adverse reactions were reported. Treatment decreased the rate of retinal thinning but modestly. SUMMARY: The evidence suggests that IVT ERT with rhTPP1 may be a safe and effective treatment for CLN2 retinopathy. However, the optimal dosage and frequency to achieve the best possible outcomes requires further investigation as does patient selection.


Assuntos
Lipofuscinoses Ceroides Neuronais , Degeneração Retiniana , Humanos , Animais , Cães , Tripeptidil-Peptidase 1 , Aminopeptidases/genética , Aminopeptidases/efeitos adversos , Serina Proteases/uso terapêutico , Serina Proteases/efeitos adversos , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Lipofuscinoses Ceroides Neuronais/complicações , Degeneração Retiniana/tratamento farmacológico , Terapia de Reposição de Enzimas/efeitos adversos
10.
J Biol Chem ; 300(2): 105641, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211816

RESUMO

The ceroid lipofuscinosis neuronal 1 (CLN1) disease, formerly called infantile neuronal ceroid lipofuscinosis, is a fatal hereditary neurodegenerative lysosomal storage disorder. This disease is caused by loss-of-function mutations in the CLN1 gene, encoding palmitoyl-protein thioesterase-1 (PPT1). PPT1 catalyzes depalmitoylation of S-palmitoylated proteins for degradation and clearance by lysosomal hydrolases. Numerous proteins, especially in the brain, require dynamic S-palmitoylation (palmitoylation-depalmitoylation cycles) for endosomal trafficking to their destination. While 23 palmitoyl-acyl transferases in the mammalian genome catalyze S-palmitoylation, depalmitoylation is catalyzed by thioesterases such as PPT1. Despite these discoveries, the pathogenic mechanism of CLN1 disease has remained elusive. Here, we report that in the brain of Cln1-/- mice, which mimic CLN1 disease, the mechanistic target of rapamycin complex-1 (mTORC1) kinase is hyperactivated. The activation of mTORC1 by nutrients requires its anchorage to lysosomal limiting membrane by Rag GTPases and Ragulator complex. These proteins form the lysosomal nutrient sensing scaffold to which mTORC1 must attach to activate. We found that in Cln1-/- mice, two constituent proteins of the Ragulator complex (vacuolar (H+)-ATPase and Lamtor1) require dynamic S-palmitoylation for endosomal trafficking to the lysosomal limiting membrane. Intriguingly, Ppt1 deficiency in Cln1-/- mice misrouted these proteins to the plasma membrane disrupting the lysosomal nutrient sensing scaffold. Despite this defect, mTORC1 was hyperactivated via the IGF1/PI3K/Akt-signaling pathway, which suppressed autophagy contributing to neuropathology. Importantly, pharmacological inhibition of PI3K/Akt suppressed mTORC1 activation, restored autophagy, and ameliorated neurodegeneration in Cln1-/- mice. Our findings reveal a previously unrecognized role of Cln1/Ppt1 in regulating mTORC1 activation and suggest that IGF1/PI3K/Akt may be a targetable pathway for CLN1 disease.


Assuntos
Doenças por Armazenamento dos Lisossomos , Lipofuscinoses Ceroides Neuronais , Animais , Camundongos , Modelos Animais de Doenças , Lisossomos/metabolismo , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Camundongos Endogâmicos C57BL
11.
Metab Brain Dis ; 39(4): 545-558, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38185715

RESUMO

Neuronal ceroid-lipofuscinosis (NCLs) are a group of severe neurodegenerative conditions, most likely present in infantile, late infantile, juvenile, and adult-onset forms. Their phenotypic characteristics comprise eyesight damage, reduced motor activity and cognitive function, and sometimes tend to die in the initial stage. In recent studies, NCLs have been categorized into at least 14 genetic collections (CLN1-14). CLN2 gene encodes Tripeptidyl peptidase 1 (TPP1), which affects late infantile-onset form. In this study, we retrieved a mutational dataset screening for TPP1 protein from various databases (ClinVar, UniProt, HGMD). Fifty-six missense mutants were enumerated with computational methods to perceive the significant mutants (G475R and G501C) and correlated with clinical and literature data. A structure-based screening method was initiated to understand protein-ligand interaction and dynamic simulation. The docking procedure was performed for the native (3EDY) and mutant (G473R and G501C) structures with Gemfibrozil (gem), which lowers the lipid level, decreases the triglycerides amount in the blood circulation, and controls hyperlipidemia. The Native had an interaction score of -5.57 kcal/mol, and the mutants had respective average binding scores of -6.24 (G473R) and - 5.17 (G501C) kcal/mol. Finally, molecular dynamics simulation showed that G473R and G501C mutants had better flexible and stable orientation in all trajectory analyses. Therefore, this work gives an extended understanding of both functional and structural levels of influence for the mutant form that leads to NCL disorder.


Assuntos
Aminopeptidases , Dipeptidil Peptidases e Tripeptidil Peptidases , Mutação de Sentido Incorreto , Lipofuscinoses Ceroides Neuronais , Serina Proteases , Tripeptidil-Peptidase 1 , Lipofuscinoses Ceroides Neuronais/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Serina Proteases/genética , Humanos , Aminopeptidases/genética , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular
12.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(1): 75-80, 2024 Jan 10.
Artigo em Chinês | MEDLINE | ID: mdl-38171563

RESUMO

OBJECTIVE: To analyze the clinical data and genetic characteristics of a child with CLN1 neuronal ceroid lipofuscinosis in conjunct with Hereditary hyperferritinemia cataract syndrome (HHCS). METHODS: A child who was admitted to the PICU of the First Affiliated Hospital of Zhengzhou University in November 2020 was selected as the study subject. Clinical data of the child was collected. Genetic testing was carried out for the child, and the result was analyzed in the light of literature review to explore the clinical and genetic characteristics to facilitate early identification. RESULTS: The patient, a 3-year-old male, had mainly presented with visual impairment, progressive cognitive and motor regression, and epilepsy. Cranial magnetic resonance imaging revealed deepened sulci in bilateral cerebral hemispheres, and delayed myelination. The activity of palmitoyl protein thioesterase was low (8.4 nmol/g/min, reference range: 132.2 ~ 301.4 nmol/g/min), whilst serum ferritin was increased (2417.70 ng/mL, reference range: 30 ~ 400 ng/ml). Fundoscopy has revealed retinal pigment degeneration. Whole exome sequencing revealed that he has harbored c.280A>C and c.124-124+3delG compound heterozygous variants of the PPT1 gene, which were respectively inherited from his father and mother. Neither variant has been reported previously. The child has also harbored a heterozygous c.-160A>G variant of the FTL gene, which was inherited from his father. Based on the clinical phenotype and results of genetic testing, the child was diagnosed as CLN1 and HHCS. CONCLUSION: The compound heterozygous variants of the PPT1 gene probably underlay the disorders in this child. For children with CLN1 and rapidly progressing visual impairment, ophthalmological examination should be recommended, and detailed family history should be taken For those suspected for HHCS, genetic testing should be performed to confirm the diagnosis.


Assuntos
Catarata , Lipofuscinoses Ceroides Neuronais , Pré-Escolar , Humanos , Masculino , Catarata/genética , Testes Genéticos , Mutação , Lipofuscinoses Ceroides Neuronais/diagnóstico , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Transtornos da Visão/genética
13.
Life Sci Alliance ; 7(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38195117

RESUMO

Juvenile neuronal ceroid lipofuscinosis (or Batten disease) is an autosomal recessive, rare neurodegenerative disorder that affects mainly children above the age of 5 yr and is most commonly caused by mutations in the highly conserved CLN3 gene. Here, we generated cln3 morphants and stable mutant lines in zebrafish. Although neither morphant nor mutant cln3 larvae showed any obvious developmental or morphological defects, behavioral phenotyping of the mutant larvae revealed hyposensitivity to abrupt light changes and hypersensitivity to pro-convulsive drugs. Importantly, in-depth metabolomics and lipidomics analyses revealed significant accumulation of several glycerophosphodiesters (GPDs) and cholesteryl esters, and a global decrease in bis(monoacylglycero)phosphate species, two of which (GPDs and bis(monoacylglycero)phosphates) were previously proposed as potential biomarkers for CLN3 disease based on independent studies in other organisms. We could also demonstrate GPD accumulation in human-induced pluripotent stem cell-derived cerebral organoids carrying a pathogenic variant for CLN3 Our models revealed that GPDs accumulate at very early stages of life in the absence of functional CLN3 and highlight glycerophosphoinositol and BMP as promising biomarker candidates for pre-symptomatic CLN3 disease.


Assuntos
Células-Tronco Pluripotentes Induzidas , Lipofuscinoses Ceroides Neuronais , Animais , Humanos , Ésteres do Colesterol , Glicoproteínas de Membrana/genética , Metabolômica , Chaperonas Moleculares , Lipofuscinoses Ceroides Neuronais/genética , Peixe-Zebra/genética
14.
Pediatr Neurol ; 152: 107-114, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242022

RESUMO

BACKGROUND: Batten disease is a rare, progressive neurogenetic disorder composed of 13 genotypes that often presents in childhood. Children present with seizures, vision loss, and developmental regression. Neurorehabilitation services (i.e., physical therapy, occupational therapy, and speech-language therapy) can help improve the quality of life for children and their families. Owing to the rarity of Batten disease, there are no standardized clinical recommendations or outcome assessments. To describe developmental profiles, current dose of neurorehabilitation, and outcome assessments used clinically for children diagnosed with Batten disease. METHODS: Electronic medical records of 70 children with Batten disease (subtypes n = 5 CLN1; n = 25 CLN2; n = 23 CLN3; n = 17 CLN6) were reviewed (7.0 ± 3.4 years). Descriptive statistics were used to describe clinical features, developmental skills, dose of neurorehabilitation, and outcome assessment use. RESULTS: Across CLN subtypes, most children experienced vision impairments (61%) and seizures (68%). Most children demonstrated delays in fine motor (65%), gross motor (80%), cognitive (63%), and language skills (83%). The most common frequency of neurorehabilitation was weekly (42% to 43%). Two standardized outcome assessments were used to track developmental outcomes: Peabody Developmental Motor Scales, second edition (30% of children completed this assessment) and Preschool Language Scales, fifth edition (27.4% of children completed this assessment). CONCLUSIONS: Neurorehabilitation professionals should understand the clinical features and prognosis for children with Batten disease. The child's clinical features and family preferences should guide the rehabilitation plan of care. Future work needs to be completed to define dosing parameters and validate outcome assessments for neurorehabilitation services.


Assuntos
Reabilitação Neurológica , Lipofuscinoses Ceroides Neuronais , Criança , Pré-Escolar , Humanos , Lipofuscinoses Ceroides Neuronais/genética , Estudos Retrospectivos , Qualidade de Vida , Convulsões , Glicoproteínas de Membrana , Chaperonas Moleculares , Proteínas de Membrana
15.
Med Clin (Barc) ; 162(5): 244-249, 2024 Mar 08.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-38044188

RESUMO

BACKGROUND: Neuronal ceroid lipofuscinoses (NCLs) are rare lysosomal storage disorders characterized by progressive mental retardation and motor developmental regression and myoclonic seizures. Hematopoietic stem cell transplantation (HSCT) has been suggested to be used in the treatment of lysosomal disorders and brain damage caused by a deficiency of soluble lysosomal enzymes. There are no previous reports on treating NCLs with HSCT in China. MATERIAL AND METHOD: NCL pediatric patients who underwent allo-HSCT at Affiliated Children's Hospital of Capital Institute of Pediatrics were involved. A combination of medical histories, clinical features, and genetic analyses was used for the diagnosis of all patients. The written consent form for allo-HSCT was attained from the patient's guardian, which was then reviewed and approved by the ethics committee before the procedure. RESULTS: From January 2018 to May 2019, the haplo-HSCT followed by PT/Cy on eight NCL pediatric patients was performed. The median age was 4.5 years (ranging from 2.8 to 7 years). The donors were their haploidentical HLA-matched parents, as no identically matched donors were found. The median nucleated cell count was 25.37 (10-34.41)×108/kg, and the median CD34+ count was 13.7 (8.95-22)×106/kg. Neutrophil reconstitution occurred 12 days (11-14 days) after transplantation, and the median platelet reconstitution time was 12 days (9-14 days) after transplantation. All patients achieved full donor chimerism and did not develop Grade II-IV acute GvHD or chronic GvHD after transplantation. The median follow-up period was 2.2 (1.5-2.6) years. All patients are still alive at present and develop no severe transplantation-related complications. The mental motor disorders, myoclonic seizures, and vision loss of all patients continued to progress. However, the progression slowed at 12 months after transplantation. CONCLUSION: This study demonstrated that it is safe and efficacious to treat NCLs with haplo-HSCT. Transplantation should be performed at an early stage for the survival quality of pediatric patients.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Lipofuscinoses Ceroides Neuronais , Humanos , Criança , Pré-Escolar , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/tratamento farmacológico , Condicionamento Pré-Transplante/métodos , Ciclofosfamida/uso terapêutico , Convulsões , Estudos Retrospectivos
16.
J Am Chem Soc ; 146(1): 145-158, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38055807

RESUMO

Ceroid lipofuscinosis neuronal protein 5 (Cln5) is encoded by the CLN5 gene. The genetic variants of this gene are associated with the CLN5 form of Batten disease. Recently, the first crystal structure of Cln5 was reported. Cln5 shows cysteine palmitoyl thioesterase S-depalmitoylation activity, which was explored via fluorescent emission spectroscopy utilizing the fluorescent probe DDP-5. In this work, the mechanism of the reaction between Cln5 and DDP-5 was studied computationally by applying a QM/MM methodology at the ωB97X-D/6-31G(d,p):AMBER level. The results of our study clearly demonstrate the critical role of the catalytic triad Cys280-His166-Glu183 in S-depalmitoylation activity. This is evidenced through a comparison of the pathways catalyzed by the Cys280-His166-Glu183 triad and those with only Cys280 involved. The computed reaction barriers are in agreement with the catalytic efficiency. The calculated Gibb's free-energy profile suggests that S-depalmitoylation is a rate-limiting step compared to the preceding S-palmitoylation, with barriers of 26.1 and 25.3 kcal/mol, respectively. The energetics were complemented by monitoring the fluctuations in the electron density distribution through NBO charges and bond strength alterations via local mode stretching force constants during the catalytic pathways. This comprehensive protocol led to a more holistic picture of the reaction mechanism at the atomic level. It forms the foundation for future studies on the effects of gene mutations on both the S-palmitoylation and S-depalmitoylation steps, providing valuable data for the further development of enzyme replacement therapy, which is currently the only FDA-approved therapy for childhood neurodegenerative diseases, including Batten disease.


Assuntos
Proteínas de Membrana , Lipofuscinoses Ceroides Neuronais , Humanos , Criança , Proteínas de Membrana/metabolismo , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Mutação
17.
Pract Neurol ; 24(1): 41-44, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37802651

RESUMO

A young man from Pakistan had his first-ever tonic-clonic seizure while playing cricket. Since age 12 years, he had reported involuntary jerks and tremulousness, sometimes with falls, particularly with bright lights. Family history included a brother who developed seizures with myoclonus in his mid-20s and parental consanguinity. Developmental history was normal. Examination identified cognitive impairment with action myoclonus. His clinical presentation raised suspicion of a progressive myoclonus epilepsy. MR scan of the brain showed white matter changes suggesting leucodystrophy with cortical atrophy. Electroencephalogram showed generalised epileptiform abnormalities with photoparoxysmal responses, including at low frequencies (1 Hz). Cortical hyperexcitability was confirmed with giant median somatosensory evoked potentials and long loop reflexes at rest. Multichannel electromyography showed action myoclonus with variable synchronous and asynchronous agonist and antagonist muscle activation with short-burst duration of 25-75 ms, and jerk-locked back-averaging showed premyoclonic potentials consistent with cortical myoclonus. Genetic sequencing identified a homozygous missense variant in the CLN6 gene (c.768C>G p.(Asp256Glu), confirming Kufs disease type A.


Assuntos
Epilepsias Mioclônicas Progressivas , Mioclonia , Lipofuscinoses Ceroides Neuronais , Masculino , Adulto , Humanos , Criança , Encéfalo , Eletroencefalografia , Convulsões , Eletromiografia , Proteínas de Membrana
18.
Stem Cell Res ; 74: 103291, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38141358

RESUMO

The neuronal ceroid lipofuscinoses (NCLs) are a group of common inherited neurodegenerative disorders of childhood. All forms of NCLs are life-limiting with no curative treatments. Most of the 13 NCL genes encode proteins residing in endolysosomal pathways, such as CLN5, a potential lysosomal enzyme. Two induced pluripotent stem cell lines (hiPSCs) were generated from skin fibroblasts of CLN5 disease patients via non-integrating Sendai virus reprogramming. They demonstrate typical stem cell morphology, express pluripotency markers, exhibit trilineage differentiation potential and also successfully differentiate into neurons. These hiPSCs represent a potential resource to model CLN5 disease in a human context and investigate potential therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Lipofuscinoses Ceroides Neuronais , Humanos , Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Glicoproteínas de Membrana Associadas ao Lisossomo/genética , Mutação/genética , Fibroblastos/metabolismo
20.
Lancet Neurol ; 23(1): 60-70, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101904

RESUMO

BACKGROUND: Cerliponase alfa is a recombinant human tripeptidyl peptidase 1 (TPP1) enzyme replacement therapy for the treatment of neuronal ceroid lipofuscinosis type 2 (CLN2 disease), which is caused by mutations in the TPP1 gene. We aimed to determine the long-term safety and efficacy of intracerebroventricular cerliponase alfa in children with CLN2 disease. METHODS: This analysis includes cumulative data from a primary 48-week, single-arm, open-label, multicentre, dose-escalation study (NCT01907087) and the 240-week open-label extension with 6-month safety follow-up, conducted at five hospitals in Germany, Italy, the UK, and the USA. Children aged 3-16 years with CLN2 disease confirmed by genetic analysis and enzyme testing were eligible for inclusion. Treatment was intracerebroventricular infusion of 300 mg cerliponase alfa every 2 weeks. Historical controls with untreated CLN2 disease in the DEM-CHILD database were used as a comparator group. The primary efficacy outcome was time to an unreversed 2-point decline or score of 0 in the combined motor and language domains of the CLN2 Clinical Rating Scale. This extension study is registered with ClinicalTrials.gov, NCT02485899, and is complete. FINDINGS: Between Sept 13, 2013, and Dec 22, 2014, 24 participants were enrolled in the primary study (15 female and 9 male). Of those, 23 participants were enrolled in the extension study, conducted between Feb 2, 2015, and Dec 10, 2020, and received 300 mg cerliponase alfa for a mean of 272·1 (range 162·1-300·1) weeks. 17 participants completed the extension and six discontinued prematurely. Treated patients were significantly less likely than historical untreated controls to have an unreversed 2-point decline or score of 0 in the combined motor and language domains (hazard ratio 0·14, 95% CI 0·06 to 0·33; p<0·0001). All participants experienced at least one adverse event and 21 (88%) experienced a serious adverse event; nine participants experienced intracerebroventricular device-related infections, with nine events in six participants resulting in device replacement. There were no study discontinuations because of an adverse event and no deaths. INTERPRETATION: Cerliponase alfa over a mean treatment period of more than 5 years was seen to confer a clinically meaningful slowing of decline of motor and language function in children with CLN2 disease. Although our study does not have a contemporaneous control group, the results provide crucial insights into the effects of long-term treatment. FUNDING: BioMarin Pharmaceutical.


Assuntos
Lipofuscinoses Ceroides Neuronais , Humanos , Masculino , Feminino , Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Lipofuscinoses Ceroides Neuronais/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/uso terapêutico , Tripeptidil-Peptidase 1 , Proteínas Recombinantes/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...